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Visualization of the Electronically Excited Structures

• Let us start by reviewing our working paradigm that we introduced in 
Chapter 1

• Electronically excited states, *R, are the critical initial transient structure in 
the photochemical reaction of all organic molecules

• Any chemical process that is produced directly from *R is called a primary 
photochemical process

• Any physical process that proceeds directly from *R is called a primary 
photophysical process
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Visualization of the Electronically Excited Structures

• We have now expanded our working paradigm to include primary 
photophysical processes of *R for the most common pathway, *R → I → P

• These photophysical pathways (*R → R) generally compete with the 
photochemical pathways (*R → I)
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Visualization of the Electronically Excited Structures

• The reactive intermediate (I) undergoes conventional thermal processes 
leading to the observed product (P)

• Reminder: I represents common reactive intermediates, like radical pairs, 
biradicals, zwitterions, carbenes, etc. that are produced in the primary 
photochemical step *R → I

• The chemical pathways from I → P are called secondary thermal 
processes
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Visualization of the Electronically Excited Structures

• Quantum mechanics provides the most general and effective paradigm of 
physics and chemistry for the description of molecular structure and 
dynamics of organic molecules

• However, quantum mechanics requires a mathematical sophistication that 
is well beyond the scope of this course
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Visualization of the Electronically Excited Structures

• Quantum mechanics provides the most general and effective paradigm of 
physics and chemistry for the description of molecular structure and 
dynamics of organic molecules

• However, quantum mechanics requires a mathematical sophistication that 
is well beyond the scope of this course

• Nevertheless, we can qualitatively interpret the mathematical ideas of 
quantum mechanics through visualizable pictorial representations

• We can translate the mathematics of quantum mechanics into pictures that 
can be translated into molecular structures (this Chapter) and molecular 
dynamics (Chapter 3)
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Molecular Wavefunctions and Molecular Structure

• Organic chemistry employs pictorial objects called molecular structures 
(Lewis structures and MOs) to make correlations with molecular function, 
properties, and reactivity

• Quantum mechanics uses mathematical objects called wave functions

• The wave function of any atomic or molecular system is a mathematical 
function that contains all the information necessary to determine any 
measurable property

• A complete wave function of any molecular system is composed of a rather 
complicated mathematical function represented by the symbol Y
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Molecular Wavefunctions and Molecular Structure

• According to the laws of quantum mechanics, a 
wave function Y is produced by solving the 
Schrödinger “wave equation”:

𝐻Y = 𝐸Y

• The laws of quantum mechanics tell us that only 
certain “allowed” stable states can exist, and that 
these allowed states possess specific 
(quantized) energies

• Each of these stable states corresponds to a 
specific wave function (Y) that is a solution to 
the wave equation
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Molecular Wavefunctions and Molecular Structure

𝐻Y = 𝐸Y

• Each Y has an associated energy (E) that is 
produced by solutions of the wave equation

• H is called the “Hamiltonian” and corresponds 
to a mathematical “operator” for the possible
energies (E) of the system

• These energies may be electronic energies of 
a molecule, vibrational energies of the atoms 
in a molecule, or the spin energies of 
electrons
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Molecular Wavefunctions and Molecular Structure

• The special properties of the wave equation are that the “allowed” (stable) 
wave functions have the remarkable property that when H is multiplied by 
Y the result, for certain values of E, is 𝐻Y = 𝐸Y

• The wave functions (Y) are called eigenfunctions, and the solutions (E) are 
called eigenvalues of the operator H

• Eigen- derives from German for “proper”

• Only the eigenvalues that correspond to the solutions of the wave equation 
are the energies that are allowed for any stable state, that is, the energies 
of all molecular states (electronic, vibrational, spin) are quantized as a 
result of the wave features of the wave equation
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Molecular Wavefunctions and Molecular Structure

• We can think of a complete molecular wave function (Y) as a mathematical 
representation of the entire molecular structure (i.e., electronic, vibrational, 
spin)

• For the molecular structural representations of R, *R, I and P, there exist a 
corresponding wavefunction Y(R), Y(*R), Y(I), and Y(P), respectively

• A system whose wave function is an eigenfunction of some operator that 
represents a measurable property of a system is said to be in an 
eigenstate for the measured property
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The Born–Oppenheimer Approximation

• For organic molecules, the most important 
method for determining molecular wave 
functions and associated energies is the 
Born–Oppenheimer approximation

• According to this approximation, the motions 
of electrons in orbitals are much more rapid 
than nuclear vibrational motions

• This approximation assumes that the low-
mass, rapidly moving, negatively charged 
electrons can immediately adjust their 
distribution to the positive potential of slowly 
moving, heavy, massive nuclei

• The important consequence of this 
approximation is that electronic and nuclear 
motions can be treated mathematically, but 
independently
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The Born–Oppenheimer Approximation

• The Born–Oppenheimer approximation makes it possible to compute a 
good first guess for Y, the “true” molecular wave functions of a molecule

• The Born–Oppenheimer approximation allows an approximate Y to be 
computed in terms of three independent wave functions 

Y~ Y0c𝑺

• This approximation breaks down whenever there is a significant interaction 
between electrons and vibrations (called vibronic coupling) or between the 
spins and the orbiting electrons (called spin–orbit coupling)
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The Born–Oppenheimer Approximation

• Let us consider the approximate electronic wave function , Y0, which we 
visualize in terms of electrons distributed in orbitals about a fixed field of 
positively charged nuclear structure

• A common approach to approximate Y0 is not to solve the wave equation 
for all the electrons in the molecule (impossible because of complications 
from electron-electron repulsion) but to solve a fictitious molecule that 
contains only “one electron”

• The wave functions generated by solving the wave equation for the one-
electron molecule are called “one-electron orbitals”, fi, each which possess 
an eigenvalue of energy, Ei

Y0 ~ f1f2f3… f𝑛
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Ground and Excited Electronic Configurations

• An electronic configuration tells us how the electrons are distributed among 
the available orbitals and also provides a description of the electronic 
distribution of a molecule

• The ground configuration is defined as the configuration for which the 
orbitals are occupied produce the state of lowest energy (R)

• All other electronic configurations correspond to electronically excited 
states (*R)

• According to the state energy diagram, in addition to the ground state (S0), 
we are interested mainly in the lowest energy electronically excited states 
(S1 and T1)
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Ground and Excited Electronic Configurations

• Let’s examine formaldehyde as an example

• This example captures the important features of ground- and excited-state 
configurations for many molecules of photochemical interest that possess a 
carbonyl

• The energies for the one-electron MOs (fi) are shown below:

1𝑆𝑂 < 1𝑆𝐶 < 2𝑆𝑂 < 𝜎𝐶−𝐻 < 𝜎𝐶−𝑂 < 𝜋𝐶=𝑂 < 𝑛𝑂 < 𝜋𝐶=𝑂
∗ < 𝜎𝐶−𝑂

∗ < 𝜎𝐶−𝐻
∗
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Ground and Excited Electronic Configurations

• What is the electronic configuration of S0 for formaldehyde?

• Formaldehyde has a total of 16 electrons, which must be distributed to fill 
the available MOs

• Remember the Pauli exclusion principle when distributing electrons!

Y0(H2C=O) = (1SO)2(1SC)2(2SO)2(sCH)2(s’CH)2(sCO)2(pCO)2(nO)2(p*CO)0

17



Ground and Excited Electronic Configurations

• A useful simplification is to only consider valence electrons, as the “core” 
electrons are so close to the nuclei that they are too stable to be perturbed

• Further, it suffices to only consider the highest energy valence electrons

• In the case of formaldehyde, we consider valence electrons in both the 
pC=O and nO as they are of comparable energy

Ground state (S0) of formaldehyde:

Y0(H2C=O) = K(pC=O)2(nO)2(p*C=O)0
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Construction of Electronic States from Electronic Configurations

• Following an analogous protocol to that followed for formaldehyde, we 
ignore the lower energy MOs and describe the ground-state electronic 
configuration of a second example, ethylene (H2C=CH2) 

Ground state (S0) of ethylene:

Y0(H2C=CH2) = K(pC=C)2(p*C=C)0

• With these two examples, we know have a way of describing the orbital 
configuration of R and *R of any organic molecule for which the MOs are 
known or can be approximated
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Construction of Electronic States from Electronic Configurations

• We are now able to describe *R of formaldehyde and ethylene in terms of 
orbital configuration

• The lowest-energy electronic excited states (the most important for organic 
photochemistry) possess an electronic configuration where one electron 
has been removed from the HOMO and placed into the LUMO

• (HO)1(LU)1

Formaldehyde

*Y(H2C=O) = K(pC=O)2(nO)1(p*C=O)1 n,p* excited state (*R)

*Y(H2C=O) = K(pC=O)1(nO)2(p*C=O)1 p,p* excited state (**R)

Ethylene

*Y(H2C=CH2) = K(pC=C)1(p*C=C)1 p,p* excited state (*R)
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Construction of Electronic States from Electronic Configurations

• The energies of the n and p orbitals of formaldehyde are similar in energy 
therefore formaldehyde will possess two electronically different transitions

• n → p* and p → p*, respectively

• These two transitions will in turn produce two corresponding excited-state 
configurations from excitation of the ground state

• *R(n,p*) and *R(p,p*), respectively

• For carbonyl compounds, which of these two states is the lowest in energy 
depends on both structural and environmental factors
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Construction of Electronic States from Electronic Configurations

• Ethylene will only have one low-energy electronic transition (p → p*) and 
one corresponding lowest-lying electronic excited-state configuration, 
*R(p,p*)

• This is because the s orbitals are very low in energy and the s* orbitals are 
very high in energy
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Characteristic Configurations of Singlet and Triplet States

• The Pauli exclusion principle states that no more than two electrons may 
occupy an orbital and if two electrons do occupy an orbital, they must be 
spin paired

• The Pauli principle demands that any ground-state molecule, in which all of
the orbitals are filled with two electrons, must also have the two electrons 
spin paired in each orbital

• Therefore, organic molecules are ground-state singlets

• For *R, two electrons are orbitally unpaired (one in HOMO, one in LUMO)

• The Pauli principle allows, but does not require, the spins of two electrons 
to be paired if they do not occupy the same orbital
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Characteristic Configurations of Singlet and Triplet States

• For formaldehyde, four low-energy excited-states, two singlets and two 
triplets, result from the two lowest energy electronic configurations
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State
Characteristic 

Orbitals

Characteristic Spin 

Electronic 

Configuration

Shorthand 

Description of 

State

S2 p,p* (p )1(n)2(p* )1 1(p,p*)

T2 p,p* (p )1(n)2(p* )1 3(p,p*)

S1 n,p* (p)2(n )1(p* )1 1(n,p*)

T1 n,p* (p)2(n )1(p* )1 3(n,p*)

S0 p,n (p)2(n)2(p*)0 1[(p)2(n)2]



Characteristic Configurations of Singlet and Triplet States

• For ethylene, only two electronically excited-states are expected to be low-
lying in energy 
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State
Characteristic 

Orbitals

Characteristic Spin 

Electronic 

Configuration

Shorthand 

Description of 

State

S1 p,p* (p )1(p* )1 1(p,p*)

T1 p,p* (p )1(p* )1 3(p,p*)

S0 p2 (p)2(p*)0 (p)2



Electronic Energy Difference between Molecular Singlet and Triplet States

• Hund’s rule: when electrons are added to atomic 
orbitals of equal energy (those that are degenerate in 
energy), they must half-fill every orbital of equal energy, 
with the spins unpaired, before spin pairing in an orbital

• In other words, when filling two orbitals of equal energy, 
the triplet state is lower in energy than the singlet state 
for the same orbital occupancy

• For organic photochemistry, Hund’s rule can be 
rephrased for MOs as follows:

For molecules possessing two half-filled orbitals, one a 
HOMO and the other a LUMO, the triplet state () is 
always lower in energy than the energy of the 
corresponding singlet state () derived from the same 
electronic (HO)1(LU)1 configuration

• For example, ES(n,p*) > ET(n,p*) and ES(p,p*) > ET(p,p*)
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Evaluation of Relative Singlet and Triplet Energies

• The basis for Hund’s rule for the relative energies of singlet and triplet 
states for (HO)1(LU)1 systems is available by considering the implications 
of the Pauli exclusion principle

• Electrons in the singlet state are not compelled to obey the Pauli exclusion 
principle and both electrons may on occasion approach the same region of 
space

• However, the Pauli principle forbids the two spin unpaired electrons of a 
triplet from occupying the same region of space

• Therefore, electrons in the triplet state are able to minimize electron-
electron repulsion relative to the singlet state

• Consequently, the energy of the triplet state (ET) will generally be lower 
than the energy of the singlet state (ES)
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Can T2 be lower in Energy than S1?

• In some cases, yes it can!

• An example is the popular triplet photosensitizer, benzophenone
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Evaluation of Relative Singlet and Triplet Energies

• Reminder: Born–Oppenheimer approximation - the motions of electrons in 
orbitals are much more rapid than nuclear vibrational motions

• The differences in energy between states in this approximation is entirely 
due to electron-electron repulsions

• The state with the smaller electron-electron repulsion will be lower in energy

• The magnitude of the electronic repulsion may be computed by integrating 
the repulsive interactions over the entire volume of the molecule

• Broken down into two types of integrals:

1) The repulsions between electrons due to classical mechanical electrostatic 
interactions between negative charge distributions of electrons

• Coulomb integral, symbol: K

2) The first order quantum mechanical correction, J, to the value of electron-
electron repulsion due to the Pauli exclusion principle

• This correction, J, is known as the electron exchange energy and is equal to DEST
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Evaluation of Relative Singlet and Triplet Energies

• As an example, let’s consider the energies of S0, S1 and T1 for 
formaldehyde

• The energies for S0, S1, and T1 of formaldehyde are defined by equations 
(1)−(3) below, respectively

E0 = 0 (by definition, as we are only concerned with DE) (1)

ES = E0(n,p*) + K(n,p*) + J(n,p*) (2)

ET = E0(n,p*) + K(n,p*) − J(n,p*) (3)

• Triplet state: When two electrons have parallel spins (), the average 
repulsion energy will be less than the repulsion energy computed by the 
classical models [i.e., E0(n,p*) + K(n,p*)] because of the tendency of 
electrons with parallel spins to avoid each other, and thus reduce electron-
electron repulsion
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Evaluation of Relative Singlet and Triplet Energies

• Now let’s calculate the singlet-triplet gap, DEST 

DEST = ES − ET

DEST = [E0(n,p*) + K(n,p*) + J(n,p*)] − [E0(n,p*) + K(n,p*) − J(n,p*)]

DEST = 2[J(n,p*)] > 0

• This qualitative result can be generalized: The energy gap between a 
singlet and triplet state of the same electronic configuration of half-filled 
orbitals is purely the result of electronic exchange and is responsible for 
the observation that the energy of a triplet state is generally lower than that 
of a singlet state of the same electronic configuration for organic molecules

• Therefore, if we can estimate the value of J, we can estimate the value of 
DEST
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Question: In general, what is larger, DEST(n,p*) or DEST(p,p*)?

• Let’s answer this by looking at a pictorial representation of orbital overlap 
of both states for formaldehyde

Examplars for DEST in Molecular Systems
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Examplars for DEST in Molecular Systems

Question: In general, what is larger, DEST(n,p*) or DEST(p,p*)?

• Let’s answer this by looking at a pictorial representation of orbital overlap 
of both states for formaldehyde

• We can conclude that DEST(n,p*) < DEST(p,p*), in general, because the 
overlap a p with a p* orbital will usually be greater than the overlap of an n 
with a p* orbital
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Examplars for DEST in Molecular Systems

• The table below list some experimental values for DEST and shows that 
states derived from n,p* configurations consistently have smaller DEST than 
states derived from p,p* configurations
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Molecule Configuration of S1 & T1 DEST (kcal/mol)

H2C=CH2 p,p* ~ 70

H2C=CH−CH=CH2 p,p* ~ 60

H2C=CH−CH=CH2−CH=CH2 p,p* ~ 48

p,p* 25a (52)b

p,p* 31a (38)b

p,p* ~34

p,p* 30

H2C=O n,p* 10

(CH3)2C=O n,p* 7

(C6H5)2C=O n,p* 5

aDEST between states of different orbital geometry. bDEST between states of the same orbital geometry.



Examplars for DEST in Molecular Systems

• Finally, we can modify our state energy diagram for formaldehyde to 
include singlet-triplet splittings
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Spin Multiplicities

• The multiplicity (M) of a given state is the number of quantum mechanically 
allowed orientations of spin magnitude S in a magnetic field

• Reminder: S = electron’s spin wave function

• Spin multiplicity = M = 2S +1 = number of allowed orientations in space

• The multiplicities for a single electron and two coupled electrons are of the 
greatest interest in organic photochemistry

• For a single electron, the spin quantum number is 1/2, so

M = [2(1/2) + 1] = 2

• Since M = 2, there are two and only two allowed orientations of the electron 
spin vector in a magnetic field, corresponding to MS = +1/2 and MS = −1/2

• Since the are only two possible orientations of a single electron in a 
magnetic field, it is called a doublet and given the symbol D
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Spin Multiplicities

• What about for situations involving the coupling of two electron spins, each 
of which occupies a separate orbital?

• Therefore, for S = 0 (↑↓), there only exist only one spin state (quantum 
number MS = 0), a singlet state, and remains a singlet state in a magnetic 
field as it lacks a magnetic moment

• For S = 1 (↑↑), there are three allowed orientations (triplet state) in a 
magnetic field, corresponding to the quantum numbers MS = +1, MS = 0, 
and MS = −1
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Orbital 

Occupancy
S

Multiplicity = 

M = 2S +1
Name Symbol

↑↓ (+½) + (−½)  1 Singlet S

↑↑ (+½) + (+½)  3 Triplet T



The Classical Harmonic Oscillator

Y~ Y0c𝑺

• We will now focus on how to visualize c, the vibrational portion of the total 
molecular wave function (Y)

• Chemists often employ a simple classical model of molecular vibrations in 
which the positive nuclei of a molecule are viewed as oscillating back and 
forth in a potential field of electrons

• These back-and-forth oscillations of the nuclei are approximated by the 
motions of a classical harmonic oscillator
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The Classical Harmonic Oscillator

• A harmonic oscillator is defined as any physical system that, when 
perturbed from its equilibrium state, experiences a restoring force (F) that is 
proportional to its displacement from its equilibrium position

• For a pair of masses connected by a flexible elastic string, with re as the 
equilibrium separation and r as an arbitrary separation that is different from 
re, the restoring force (F) to reposition the system is given by Hooke’s law:

𝐹 = −𝑘∆𝑟 = −𝑘 𝑟 − 𝑟𝑒

where ∆𝑟 = 𝑟 − 𝑟𝑒 is the absolute displacement from the equilibrium 
separation, and k is the force constant for oscillation (proportionality constant that 
relates the amount of force required to achieve a certain displacement

• A classic harmonic oscillator that is originally at rest in its equilibrium 
position may be set into oscillation by some perturbation. After a certain 
period (relaxation time), the system returns to its equilibrium position by 
giving off the excess energy provided by the perturbation to its 
surroundings
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The Classical Harmonic Oscillator

• From classical physics, force (F) is defined as the negative slope of the 
potential energy of the system (eq 4)

• From calculus, this relationship implies the existence of a potential-energy 
function relating potential energy to the force constant (k) and the 
displacement from equilibrium (Dr) (eq 5)

𝐹 = −𝑑 Τ𝑃𝐸 𝑑∆𝑟 (4)

𝑃𝐸 =
1

2
𝑘∆𝑟2 (5)

• Eq 5 provides the very important result that for a harmonic oscillator, the 
potential energy (PE) varies directly with the magnitude of k and directly 
with the magnitude of (Dr)2

• Thus, harmonic oscillation can be characterized as a parabolic PE curve
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The Classical Harmonic Oscillator

• Let’s consider a vibrating (oscillating) diatomic molecule, X–Y

• For a classic harmonic oscillator, the relative vibrational motion of X with 
respect to Y is periodic, oscillating function of time t

• The frequency of oscillation, n, follows eq 6, where k is the force constant 
of the chemical bond between X and Y, and m is the reduced mass of the 
two atoms forming the bond (eq 7)

n 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = Τ𝑘 𝜇 Τ1 2 (6)

𝜇 = Τ𝑚1 + 𝑚2 𝑚1𝑚2
Τ1 2 (7)
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The Classical Harmonic Oscillator

• Based on eq 6 and 7, we deduce the following of any classic harmonic 
oscillator:

1) The frequency of vibration (n) of two masses, m1 and m2, is determined 
only by the reduced mass (m) and the force constant (k), and not by the 
amplitude of motion

2) The larger the force constant (k) for a given pair of masses of reduced 
mass m, the higher the frequency (n)

3) The smaller the reduced mass (m), the higher the frequency (n)

• In quantum mechanics, the frequency of motion of a quantum particle is 
related to its energy by n = E/h

• Higher n of vibrations = higher E; lower n of vibrations = lower E
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The Classical Harmonic Oscillator

• According to eq 5, the plot of the PE of a vibrating diatomic molecule (X–Y) 
as a function of internuclear separation (r) should give a classic parabolic 
PE curve
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re

XY X–––Y

X–Y

Equilibrium configuration

𝐹 = −𝑑 Τ𝑃𝐸 𝑑∆𝑟 = 0 since ∆𝑟 = 0

PE increases from internuclear 

and electron repulsion
PE increases from stretching and 

weakening of X–Y bond

r

PE

Note: Since we are generally 

interested in energy differences 

between vibrational levels, we 

arbitrarily assign PE a minimum 

value of E0 = 0 

• All other vibrational energies 

are defined as positive (higher 

E, less stable) relative to E0



The Classical Harmonic Oscillator

• Applying eq 6 and 7 to organic molecules leads to two important 
conclusions:
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1) C–H bonds tend to be of the highest 

n for organic molecule because they 

possess both large k (strong bonds, 

~90-100 kcal mol-1, which are 

analogous to stiff springs holding 

the atoms together), and small m (H 

is the lightest atom)

2) Weak bonds (~60-80 kcal mol-1) 

between two heavy atoms, such as 

C–Cl bond, will be very low n

because they possess both small k

(weak bonds, analogous to soft 

spring holding the atoms together) 

and a large m (the heavy Cl atoms 

dominates the value of m)



The Classical Harmonic Oscillator

𝑃𝐸 =
1

2
𝑘∆𝑟2 (5)

• From equation 5, we see that a strong bond 
(i.e. one with a large k) a large change in PE 
will occur with only a small displacement 
because PE is a quadratic function of the 
displacement , Dr

• A strong bond, therefore, corresponds to a 
PE curve with steep walls, such that small 
displacements cause a large increase in PE

• Such oscillators are relatively difficult to 
deform from their equilibrium geometry

• Since the frequency of n is directly 
proportional to bond strength, a steep PE 
curve implies higher n of vibration
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The Classical Harmonic Oscillator

𝑃𝐸 =
1

2
𝑘∆𝑟2 (5)

• On the other hand, a weak bond corresponds 
to a PE curve with shallow walls, such that 
large displacements do not cause a large 
increase in PE

• Since the frequency of n is directly 
proportional to bond strength, a shallow PE 
curve implies lower n of vibration
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Vibrational Levels

• In quantum mechanics, the starting model for a vibrating molecule is a 
harmonic oscillator that obeys Hooke’s law

• Solving the wave equation (HY = EY) for a harmonic oscillator obeying 
Hooke’s law reveals that energy levels, E, are quantized and 
characterized by a quantum number, 

• The PE of each vibrational level, PE, is given by eq 8, where  is the 
vibrational quantum number ( = 0, 1, 2,…), n is the vibrational frequency 
of the classical oscillator and h is Plank’s constant

𝑃𝐸𝑣 = ℎn(𝑣 + 0.5) (8)
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Vibrational Levels

• The figures below represent the quantum mechanical modification of the 
classical harmonic oscillator

• Displays the allowed energy levels whose energies are E

• Indicated by the horizontal lines (for  =0−6) in the PE curves
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Vibrational Levels

• A few important notes:

1) Only quantized PE values given by eq 8 are possible (stable) for the 
allowed values of the quantum number . In addition, vibrational energy 
levels for a quantum mechanical harmonic oscillator are equally spaced 
in units of hn above the  = 0 level

2) The zero-point vibrational energy of a quantum mechanical harmonic 
oscillator is not 0, but hn/2 (from eq 8)

3) For the same value of , the PE is larger for a steeper potential well 
because the spacings between vibrational levels is larger for vibrations of 
higher frequencies (from eq 8)

• Notice that the steeper potential well (left on previous slide) has a higher zero-
point energy ( = 0), which occurs because the frequency of the PE is greater
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Visualization of Wavefunctions for Diatomic Molecules

• Now, let’s qualitatively add the mathematical form 
of the vibrational wave functions c for  = 0, 
1−4, and 10

• These are plotted on the quantized energy levels 
(horizontal straight lines)

• Like any wave, such as a sine wave, it has an 
amplitude that continuously oscillates from 
mathematically positive (above horizontal line) 
and negative (below horizontal line) values

• The number of times c passes through zero 
(when wave crosses horizontal line) equals 

• The wave function for  = 0 does not possess a 
node, so this vibrational wave function is 
analogous to the wave function of the 1s orbital  
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Visualization of Wavefunctions for Diatomic Molecules

51

• In quantum mechanics, it is the square of the 
wave function that is directly related to laboratory 
observations

• Since the square of the wave function represents 
the probability of finding particles (e.g. electrons, 
nuclei) in space, the function c

2 represents the 
probability of finding the nuclei at a given value 
of r during a vibration in a given energy level



The Anharmonic Oscillator

• The harmonic oscillator is a good zero-order approximation for a vibrating 
atomic molecule X–Y for vibrations near the potential energy curve

• However, the model becomes less reliable and eventually fails for nuclear 
geometries to severe compressions and elongations of the X–Y bond

• For example, when a bond has been extended to two or three times its 
normal length (i.e., from 1−2 Å  to 5−6 Å), the atoms X and Y experience 
very little restoring force (bond is essentially broken)

• Therefore, for a real molecule, the PE will rise more gradually than 
predicted by PE = 0.5kDr2 when the bond is stretched because of the 
weakening of the X–Y bond at large r
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The Anharmonic Oscillator

• Let’s consider the diatomic molecule 
HCl

• The anharmonic oscillator considers 
first-order corrections to the zero-
order harmonic oscillator model

• As the H–Cl bond stretches, the PE 
reaches a limiting value (the PE of 
the bond or the bond energy), the 
restoring force disappears, and the 
H–Cl bond breaks

• The energy of the asymptote 
corresponds to the dissociation 
energy of the HCl molecule
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The Anharmonic Oscillator

• Another important feature of an 
anharmonic oscillator is that its 
vibrational levels, although 
quantized, are not equally 
separated in energy

• The energy separations decrease 
slowly with increasing 

• For example, the energy separation 
between  = 0 and  = 1 is ~12 kcal 
mol-1, while the energy separation 
between   = 10 and  = 11 is only  
~5 kcal mol-1
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Up Next…
Chapter 3: Transitions between States: 
Photophysical Processes
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